Abstract

Huanglongbing (HLB) or citrus greening disease is one of the most important diseases affecting citrus orchards in Florida and other parts of the world. The first critical step for a successful control of HLB is its detection and diagnosis. Spectroscopy has proven to yield reliable results for its early detection, minimizing the time consumed for this process. This study presents a new approach of high-resolution aerial imaging for HLB detection using a low-cost, low-altitude remote sensing multi-rotor unmanned aerial vehicle (UAV). A multi-band imaging sensor was attached to a UAV that is capable of acquiring aerial images at desired resolution by adjusting the flying altitude. Moreover, the results achieved using UAV-based sensors were compared with a similar imaging system (aircraft-based sensors) with lower spatial resolution. Data comprised of six spectral bands (from 530 to 900nm) and seven vegetation indices derived from the selected bands. Stepwise regression analysis was used to extract relevant features from UAV-based and aircraft-based spectral images. At both spatial resolutions, 710nm reflectance and NIR-R index values were found to be significantly different between healthy and HLB-infected trees. During classification studies, accuracies in the range of 67–85% and false negatives from 7% to 32% were acquired from UAV-based data; while corresponding values were 61–74% and 28–45% with aircraft-based data. Among the tested classification algorithms, support vector machine (SVM) with kernel resulted in better performance than other methods such as SVM (linear), linear discriminant analysis and quadratic discriminant analysis. Thus, high-resolution aerial sensing has good prospect for the detection of HLB-infected trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.