Abstract

BackgroundThe human landing catch (HLC) is the standard reference method for measuring human exposure to mosquito bites. However, HLC is labour-intensive, exposes collectors to infectious mosquito bites and is subjected to collector bias. These necessitate local calibration and application of alternative methods. This study was undertaken to determine the relative sampling efficiency (RSE) of light traps with or without yeast-produced carbon dioxide bait vs. HLC in south-central Ethiopia.MethodsThe experiment was conducted for 39 nights in a 3 × 3 Latin square randomized design with Anopheles arabiensis as the target species in the period between July and November 2014 in Edo Kontola village, south-central Ethiopia. Center for Disease Control and Prevention light trap catches (LTC) and yeast-generated carbon dioxide-baited light trap catches (CB-LTC) were each evaluated against HLC. The total nightly mosquito catches for each Anopheles species in either method was compared with HLC by Pearson correlation and simple linear regression analysis on log-transformed [log10(x + 1)] values. To test if the RSE of each alternative method was affected by mosquito density, the ratio of the number of mosquitoes in each method to the number of mosquitoes in HLC was plotted against the average mosquito abundance.ResultsOverall, 7606 Anopheles females were collected by the three sampling methods. Among these 5228 (68.7%) were Anopheles ziemanni, 1153 (15.2%) An. arabiensis, 883 (11.6%) Anopheles funestus s.l., and 342 (4.5%) Anopheles pharoensis. HLC yielded 3392 (44.6%), CB-LTC 2150 (28.3%), and LTC 2064 (27.1%) Anopheles females. The RSEs of LTC and HLC for An. arabiensis were significantly correlated (p < 0.001) and density independent (p = 0.65). However, for outdoor collection of the same species, RSEs of LTC and CB-LTC were density dependent (p < 0.001). It was estimated that on average, indoor LTC and CB-LTC each caught 0.35 and 0.44 times that of indoor HLC for An. arabiensis respectively.ConclusionsResults showed that HLC was the most efficient method for sampling An. arabiensis. LTC can be used for large-scale indoor An. arabiensis surveillance and monitoring when it is difficult to use HLC. CB-LTC does not substantially improve sampling of this major vector compared to LTC in this setting.Trial registration PACTR201411000882128 (retrospectively registered 8 September, 2014)

Highlights

  • The human landing catch (HLC) is the standard reference method for measuring human exposure to mosquito bites

  • The HLC is the standard method for measuring exposure of humans to mosquito bites [5] and for estimating the human biting rate (HBR) which is a key determinant of the entomological inoculation rate (EIR), a measure of malaria transmission [6]

  • The results showed that the HLC was the most efficient method compared to both light trap catches (LTC) and carbon dioxide-baited light trap catches (CB-LTC) for sampling the majority of Anopheles species including the major malaria vector, An. arabiensis

Read more

Summary

Introduction

The human landing catch (HLC) is the standard reference method for measuring human exposure to mosquito bites. HLC is labour-intensive, exposes collectors to infectious mosquito bites and is subjected to collector bias These necessitate local calibration and application of alternative methods. In attempts to control malaria by attacking the vector, it is important to measure the impact of such interventions on mosquito populations. Measuring this requires an appropriate method of sampling mosquitoes biting humans [2, 3]. Results obtained by HLC can be biased due to natural human variations in attractiveness to mosquitoes [7, 8] These issues limit the application of HLC for monitoring the effectiveness of vector control interventions and necessitate the search for alternative methods

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call