Abstract

To compare tumor vascularity and hemodynamics in three rat hepatoma models: N1-S1 cells in Sprague-Dawley rats, McA-RH7777 cells in Sprague-Dawley rats, and 13762 MAT B III cells in F344 rats. The three rat hepatoma models were induced in five rats per group. After confirming that the tumors grew up to 10 mm on magnetic resonance imaging, the rats underwent dynamic contrast-enhanced ultrasonography (DCE-US). Afterward, the rats were euthanized for histologic analyses. The Kruskal-Wallis test was used to compare the rat hepatoma models. Correlation coefficients were calculated between the microvessel density (MVD) and DCE-US parameters. On DCE-US imaging, arterial enhancement and washout were demonstrated in all N1-S1 tumors, while persistent peripheral enhancement on arterial to portal phases was shown in all 13762 MAT B III tumors. The McA-RH7777 tumors presented diverse enhancement patterns on arterial and portal phases. There were no significant differences in DCE-US parameters among the three hepatoma groups, while MVD was correlated with peak intensity (r = 0.565, p = 0.044), mean transit time (r = -0.559, p = 0.047), and time to peak (r = - 0.617, p = 0.025) of individual rats. The necrosis ratio was significantly different between the models (p = 0.031); 13762 MAT B III showed a significantly higher necrosis ratio than N1-S1 (p < 0.050 by post hoc test). The N1-S1 tumor may be suitable as a model to investigate hypervascular hepatic tumors of the liver in DCE-US such as hepatocellular carcinoma among the three tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call