Abstract

Nanowire (NW) arrays containing a top segment of GaxIn1–xP are investigated, comparing NWs grown using two different Ga precursors, trimethylgallium (TMGa) and triethylgallium (TEGa). TMGa is the precursor commonly used for the particle‐assisted vapor–liquid–solid (VLS) growth of GaxIn1–xP NWs. However, it shows inefficient pyrolysis at typical NW growth conditions. The use of the alternative precursor TEGa is investigated by making a direct comparison between NWs grown using TEGa and TMGa at otherwise identical growth conditions. Growth rates, resulting NW materials composition, and time‐resolved photoluminescence (TRPL) lifetimes are investigated. With increasing Ga content of the NWs, the TRPL lifetimes decrease, indicating trap states that are associated with GaP. Somewhat longer TRPL lifetimes for the samples grown using TEGa indicate a lower concentration of deep trap states. For doped NWs, it is found that the strong effect of the p‐type dopant diethylzinc (DEZn) on the NW composition, observed for GaxIn1–xP NWs grown using TMGa, is absent when using TEGa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call