Abstract

Predicting forest development under varying treatment schedules forms the basis of forest management planning. The actual growth predictions are made with a forest simulator which includes growth equations and additional models for predicting a number of varying tree, forest and site properties. Forest growth simulators typically include either tree-level or stand-level growth models, but these two approaches have not been thoroughly compared. We set out here to compare these two approaches with the SIMO simulator framework in a small data set from southern Finland based on 60 sample plots in 30 stands, the development of which was known for 20 years. The stands chosen were very dense, so that the simulators could be tested under extreme conditions. The results show that the stand-level model is more accurate in almost all cases and its computational burden is much lower. It could therefore be advisable to use tree-level models for short-term predictions, which would ensure detailed information on forest structure for planning the near-future operations. Stand-level models would be more advisable in longer term predictions, especially when accurate volume estimates are considered more important than the forest structure. The errors observed in these simulators were analysed further by quantile regression, which allows empirical estimates of confidence intervals to be obtained for the simulator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call