Abstract

Posterior tibialis tendon (PTT) dysfunction (PTTD) is associated with adult acquired flatfoot deformity. PTTD is commonly treated with a flexor digitorum longus (FDL) tendon transfer (FDLTT) to the navicular (NAV), medial cuneiform (CUN), or distal residuum of the degraded PTT (rPTT). We assessed the kinetic and kinematic outcomes of these three attachment sites using cadaveric gait simulation. Three transfer locations (NAV, CUN, rPTT) were tested on seven prepared flatfoot models using a robotic gait simulator (RGS). The FDLTT procedures were simulated by pulling on the PTT with biomechanically realistic FDL forces (rPTT) or by pulling on the transected FDL tendon after fixation to the navicular or medial cuneiform (NAV and CUN, respectively). Plantar pressure and foot bone motion were quantified. Peak plantar pressure significantly decreased from the flatfoot condition at the first metatarsal (NAV) and hallux (CUN). No difference was found in the medial-lateral center of pressure. Kinematic findings showed minimal differences between flatfoot and FDLTT specimens. The three locations demonstrated only minimal differences from the flatfoot condition, with the NAV and CUN procedures resulting in decreased medial pressures. Functionally, all three surgical procedures performed similarly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call