Abstract
In this paper, well-known traditional band selection methods which are used in hyperspectral imaging, namely, Maximum-Variance Principal Component Analysis (MVPCA), Maximum-SNR Principal Component Analysis (MSNRPCA), k-means, k-medoids, and recently proposed Automatic Band Selection (ABS) and Band Column Selection (BCS) approaches are compared. To assess the band selection performance of the methods, the change of classification performance by the number of selected bands is used. Performances of the methods are evaluated on three hyperspectral data sets and obtained results are compared in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.