Abstract

The aim of this study was to investigate the effect of neuromuscular electrical stimulation burst duty cycle (BDC) and current type (sinusoidal alternating current [sAC] vs. rectangular alternating current [rAC]) on the electrically induced isometric torque (EIT) and discomfort. Pulsed current (PC) stimulation, which corresponds to one pulse rAC, was included in testing. A repeated-measures design was used. The left quadriceps of 22 healthy subjects (mean ± SD age, 33 ± 8 yrs) were stimulated alternately with sAC and rAC current bursts (4-kHz carrier frequency; 71 bursts per second burst frequency) to produce isometric contractions. A range of BDCs were tested for sAC (7%-50%) and rAC (2%-18%) stimulation at fixed intensities while EIT and discomfort were recorded. BDC presentation order was randomized. Overall, both current types elicited peak EIT at ∼14% BDC (range, 7%-21%). Significantly more EIT was produced by rAC than by sAC stimulation (P < 0.005). Discomfort increased with BDC and was similar for both current types. The study confirmed previous findings that conventional sAC stimulation (50% BDC) and pulsed current stimulation (rAC with 2% BDC) used in sports and rehabilitation produce similar EIT levels. However, rAC stimulation at low BDC (7%-18%) was more effective (+35% torque produced with similar discomfort) than pulsed current or conventional sAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.