Abstract

Various two-dimensional (2D) homonuclear correlation experiments have been proposed to observe proximities between identical half-integer spin quadrupolar nuclei in solids. These experiments select either the single- or double-quantum coherences during the indirect evolution period, t1. We compare here the efficiency and the robustness of the 2D double-quantum to single-quantum (DQ-SQ) and SQ-SQ homonuclear correlations for two half-integer spin quadrupolar isotopes subject to small chemical shift anisotropy (CSA): 11B with a nuclear spin I = 3/2 and 27Al with I = 5/2. Such a comparison is performed using experiments on two model samples: Li2B4O7 for 11B and AlPO4-14 for 27Al. For both isotopes, the DQ-SQ homonuclear correlations are recommended since they allow probing the proximities between nuclei with close or identical frequencies. In the case of small or moderate isotropic chemical shift differences (e.g. 11B) the [SR221] or [BR221] bracketed DQ-SQ recoupling schemes are recommended; whereas it is the BR221 un-bracketed one otherwise (e.g. 27Al).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call