Abstract

In the last few decades, several sequential extraction procedures have been developed to quantify the chemical status of metals in the solid phase. In this study, three extraction techniques (modified [A. Tessier, P.G.C. Campbell, M. Bisson, Anal. Chem. 51 (1979) 844]; [R.C. Stover, L.E. Sommers, D.J. Silvera, J. Water Pollut. Con. F. 48 (1976) 2165]; and the Bureau Communautaire de Reference (BCR) [K.F. Mossop, C.M. Davidson, Anal. Chim. Acta 478 (2003) 111]) were applied to study the distribution of trace (Co, Ni, Zn and Cu) and major (Mn and Fe) elements in two different anaerobic granular sludges from full-scale methanogenic wastewater treatment plants. The Stover scheme displayed a higher number of fractions that induces a poor recovery compared to the other schemes. The sequential extraction scheme recommended by BCR and the modified Tessier scheme gave similar trends and are sufficiently repeatable and reproducible for application in fractionation studies. However, the BCR scheme seems to be of limited utilisation to study anaerobic matrixes because the extraction stage for its reducible fraction may release substantial amounts of trace elements bound to the organic/sulfides fraction, and consequently, the recovery of trace elements in the oxide fraction may be overestimated at the expense of the oxidisable fraction. As a final conclusion, the modified Tessier scheme seems to be the most suitable scheme to study the metal partitioning in anaerobic granular sludges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call