Abstract

BackgroundPatlak’s graphical analysis can provide tracer net influx constant (Ki) with limitation of assuming irreversible tracer trapping, that is, release rate constant (kb) set to zero. We compared linear Patlak’s analysis to non-linear three-compartment three-parameter kinetic model analysis (3P-KMA) providing Ki, kb, and fraction of free 18F-FDG in blood and interstitial volume (Vb).MethodsDynamic PET data of 21 lung cancer patients were retrospectively analyzed, yielding for each patient an 18F-FDG input function (IF) and a tissue time-activity curve. The former was fitted with a three-exponentially decreasing function, and the latter was fitted with an analytical formula involving the fitted IF data (11 data points, ranging 7.5–57.5 min post-injection). Bland-Altman analysis was used for Ki comparison between Patlak’s analysis and 3P-KMA. Additionally, a three-compartment five-parameter KMA (5P-KMA) was implemented for comparison with Patlak’s analysis and 3P-KMA.ResultsWe found that 3P-KMA Ki was significantly greater than Patlak’s Ki over the whole patient series, + 6.0% on average, with limits of agreement of ± 17.1% (95% confidence). Excluding 8 out of 21 patients with kb > 0 deleted this difference. A strong correlation was found between Ki ratio (=3P-KMA/Patlak) and kb (R = 0.801; P < 0.001). No significant difference in Ki was found between 3P-KMA versus 5P-KMA, and between 5P-KMA versus Patlak’s analysis, with limits of agreement of ± 23.0 and ± 31.7% (95% confidence), respectively.ConclusionsComparison between 3P-KMA and Patlak’s analysis significantly showed that the latter underestimates Ki because it arbitrarily set kb to zero: the greater the kb value, the greater the Ki underestimation. This underestimation was not revealed when comparing 5P-KMA and Patlak’s analysis. We suggest that further studies are warranted to investigate the 3P-KMA efficiency in various tissues showing greater 18F-FDG trapping reversibility than lung cancer lesions.

Highlights

  • Patlak’s graphical analysis can provide tracer net influx constant (Ki) with limitation of assuming irreversible tracer trapping, that is, release rate constant set to zero

  • Many factors can influence the standardized uptake value (SUV) outcome such as the uptake time, as reported for example in lung tumors [4]. This is the reason why, besides the SUV index, different quantitative parameters that may be obtained from kinetic model analyses (KMAs) have been implemented in a number of studies investigating various tissues [5,6,7,8,9,10,11,12,13]

  • No significant difference was found between 5P-KMA Ki and Patlak’s Ki: Ki ratio (Table 1) (i.e., 5P-KMA/Patlak) which was 1.056 ± 0.074 on average (95% confidence limits), with 95% limits of agreement of 0.317. 3P-KMA kb was found to be significantly correlated with 5P-KMA kb (R = 0.60; P < 0.01)

Read more

Summary

Introduction

Patlak’s graphical analysis can provide tracer net influx constant (Ki) with limitation of assuming irreversible tracer trapping, that is, release rate constant (kb) set to zero. Many factors can influence the SUV outcome such as the uptake time, as reported for example in lung tumors [4] This is the reason why, besides the SUV index, different quantitative parameters that may be obtained from kinetic model analyses (KMAs) have been implemented in a number of studies investigating various tissues [5,6,7,8,9,10,11,12,13]. The KMAs both require a dynamic acquisition over the tissue of interest to obtain its time-activity-curve (TAC) and a serial blood sampling to estimate the socalled input function (IF, i.e., 18F-FDG blood TAC) Among these KMAs, Patlak’s analysis is usually considered as a gold standard that provides the 18F-FDG net influx constant (i.e., the uptake rate constant, Ki) from a linear fitting of graphical data [7]. It assumes an irreversible tracer trapping, a well-identified drawback since numerous studies have shown trapping reversibility in various tissues, either under physiological or pathological conditions [6, 9,10,11, 15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call