Abstract

This paper reports results of comparison of three digital fringe signal processing methods implemented in the same free-fall absolute gravimeter. A two-sample zero-crossing method, a windowed second-difference method and a method of non-linear least-squares adjustment on the undersampled fringe signal are compared in numerical simulations, hardware tests and actual measurements with the MPG-2 absolute gravimeter, developed at the Max Planck Institute for the Science of Light, Germany. The two-sample zero-crossing method realizes data location schemes that are both equally spaced in distance and equally spaced in time (EST) along the free-fall trajectory. The windowed second-difference method and the method of non-linear least-squares adjustment with complex heterodyne demodulation operate with the EST data. Results of the comparison verify an agreement of the three methods within one part in 109 of the measured gravity value, provided a common data location scheme is considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call