Abstract

BackgroundPedicle screw insertion in osteoporotic patients is challenging. Achieving more screw-cortical bone purchase and invasiveness minimization, the cortical bone trajectory and the midline cortical techniques represent alternatives to traditional pedicle screws. This study compares the fatigue behavior and fixation strength of the cement-augmented traditional trajectory (TT), the cortical bone trajectory (CBT), and the midline cortical (MC).MethodsTen human cadaveric spine specimens (L1 - L5) were examined. The average age was 86.3 ± 7.2 years. CT scans were provided for preoperative planning. CBT and MC were implanted by using the patient-specific 3D-printed placement guide (MySpine®, Medacta International), TT were implanted freehand. All ten cadaveric specimens were randomized to group A (CBT vs. MC) or group B (MC vs. TT). Each screw was loaded for 10,000 cycles. The failure criterion was doubling of the initial screw displacement resulting from the compressive force (60 N) at the first cycle, the stop criterion was a doubling of the initial screw displacement. After dynamic testing, screws were pulled out axially at 5 mm/min to determine their remaining fixation strength.ResultsThe mean pull-out forces did not differ significantly. Concerning the fatigue performance, only one out of ten MC of group A failed prematurely due to loosening after 1500 cycles (L3). Five CBT already loosened during the first 500 cycles. The mean displacement was always lower in the MC. In group B, all TT showed no signs of failure or loosening. Three MC failed already after 26 cycles, 1510 cycles or 2144 cycles. The TT showed always a lower mean displacement. In the subsequent pull-out tests, the remaining mean fixation strength of the MC (449.6 ± 298.9 N) was slightly higher compared to the mean pull-out force of the CBT (401.2 ± 261.4 N). However, MC (714.5 ± 488.0 N) were inferior to TT (990.2 ± 451.9 N).ConclusionThe current study demonstrated that cement-augmented TT have the best fatigue and pull-out characteristics in osteoporotic lumbar vertebrae, followed by the MC and CBT. MC represent a promising alternative in osteoporotic bone if cement augmentation should be avoided. Using the patient-specific placement guide contributes to the improvement of screws’ biomechanical properties.

Highlights

  • Pedicle screw insertion in osteoporotic patients is challenging

  • This study aimed at comparing the fatigue behavior and fixation strength of pedicle screws using the cement-augmented TT, the cortical bone trajectory (CBT), and the midline cortical (MC) fixation approach, respectively

  • A biomechanical analysis was performed to evaluate whether CBT screws or MC screws represent a possible alternative to cement-augmented TT screws

Read more

Summary

Introduction

Achieving more screw-cortical bone purchase and invasiveness minimization, the cortical bone trajectory and the midline cortical techniques represent alternatives to traditional pedicle screws. E.g. polymethylmethacrylate (PMMA), is associated with inherent disadvantages [17, 25, 38], auspicious alternatives are needed to achieve sufficient stability To overcome this issue by enhancing pedicle screw fixation in bone of compromised quality, different screw designs and insertion techniques regarding screw trajectory modifications were developed [36, 40]. In 2009, Santoni et al [35] introduced the cortical bone trajectory (CBT) fixation approach This trajectory starts medially at the pars interarticularis and follows a craniolaterally direct path through the pedicle [26]. A biomechanical analysis was performed to evaluate whether CBT screws or MC screws represent a possible alternative to cement-augmented TT screws

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call