Abstract
The Central Weather Bureau (CWB) and National Center for Research on Earthquake Engineering (NCREE) launched a project to build an engineering geological database for strong-motion stations in Taiwan in 2000. The project measures shear-wave velocity using the suspension PS-logging method. In this study, we conduct array measurements of microtremors and apply the stress wave propagation method (SWPM) at seven free-field strong-motion stations in Ilan County to estimate shallow shear-wave velocity structures. We focus on the sediment layers of the top 100 m to compare the shear-wave velocity structures of the three different methods. There are some misfits among the results of the three different methods; so we calculate the values of Vs 30, Vs 100 and plot S-wave travel-time curves of these methods for each site to analyze the misfits effectively. This analysis helped us to prove the efficiency of the microtremor array method in investigating shear-wave velocity structures in the shallow subsurface. Moreover, the horizontal-to-vertical ratios of microtremors for each survey point show the existence of divergence at the same site. We considered this as evidence that misfits are caused by the heterogeneous nature of sediments and also due to the nature of the methods as being one-, two- and three-dimensional. Furthermore, the average shear-wave velocity structure of microtremor arrays may be more representative of the whole site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.