Abstract

American National Standards Institute (ANSI) standard Z88.10, Respirator Fit Testing Methods, includes criteria to evaluate new fit-tests. The standard allows generated aerosol, particle counting, or controlled negative pressure quantitative fit-tests to be used as the reference method to determine acceptability of a new test. This study examined (1) comparability of three Occupational Safety and Health Administration-accepted fit-test methods, all of which were validated using generated aerosol as the reference method; and (2) the effect of the reference method on the apparent performance of a fit-test method under evaluation. Sequential fit-tests were performed using the controlled negative pressure and particle counting quantitative fit-tests and the bitter aerosol qualitative fit-test. Of 75 fit-tests conducted with each method, the controlled negative pressure method identified 24 failures; bitter aerosol identified 22 failures; and the particle counting method identified 15 failures. The sensitivity of each method, that is, agreement with the reference method in identifying unacceptable fits, was calculated using each of the other two methods as the reference. None of the test methods met the ANSI sensitivity criterion of 0.95 or greater when compared with either of the other two methods. These results demonstrate that (1) the apparent performance of any fit-test depends on the reference method used, and (2) the fit-tests evaluated use different criteria to identify inadequately fitting respirators. Although "acceptable fit" cannot be defined in absolute terms at this time, the ability of existing fit-test methods to reject poor fits can be inferred from workplace protection factor studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.