Abstract
This paper investigates the suitability of three step-down dc-dc converter topologies as the final conversion stage in a wide output voltage modular ac-dc power supply. Single-phase, two-phase and three-level buck converters are evaluated over a wide range of outputs using analytical models and physical measurements. The converters' performance is evaluated at all operating points using statistical analysis of the converter component losses produced to assess their suitability for wide output voltage applications. The dynamic performance of the converters is also evaluated to determine their stability for on-the-fly variations in output voltage and load. The analysis finds that the three-level converter is more efficient across the full output range, with lower component loss variability compared to the one-phase and two-phase buck converters. However, it suffers from poor dynamic performance with high output deviations and slow response times. The analysis was verified using three prototype converters designed for 200 W, 15 V to 28 V output.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.