Abstract

Accurate measurement of time spent sitting, standing, and stepping is important in studies seeking to evaluate interventions to reduce sedentary behavior. In this study, the authors evaluated the agreement in classification of these activities from three algorithms applied to thigh-worn ActiGraph accelerometers using predictions from the widely used activPAL device as a criterion. Participants (n = 29, 72% female, age 23–68 years) wore the activPAL3™ micro (processed by PAL software, version 7.2.32) and the ActiGraph™ GT9X accelerometer on the right front thigh concurrently for working hours on one full workday (7.2 ± 1.2 hr). ActiGraph output was classified via the three test algorithms: ActiGraph’s ActiLife software (inclinometer); an open source method; and, a machine-learning algorithm reported in the literature (Acti4). Performance at an instance level was evaluated by computing classification accuracy (F scores) for 15-s windows. The F scores showed high accuracy relative to the criterion for identifying sitting (96.7–97.1) and were 84.7–85.1 for identifying standing and 78.1–80.6 for identifying stepping. The four methods agreed strongly in total time spent sitting, standing, and stepping, with intraclass correlation coefficients of .96 (95% confidence interval [.92, .96]), .92 (95% confidence interval [.81, .96]), and .87 (95% confidence interval [.53, .95]) but sometimes overestimated sitting time and underestimated standing time relative to activPAL. These algorithms for identifying sitting, standing, and stepping from thigh-worn accelerometers provide estimates that are very similar to those obtained using the activPAL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call