Abstract
Thermal pore pressurization in soil media has been investigated for the past few decades. It has been shown that temperature variations may significantly affect thermal pore pressure in clay soils confined deep into the ground. Moreover, thermal loading may lead to stress change and thermal deformation. Thermo-poroelastic and advance thermo-poroelastoplastic constitutive models have been formulated and incorporated numerically to simulate the thermo-hydro-mechanical process. However, the accurate response of soil media during THM process has not been completely understood. Although numerical modelling reasonably predicts the experimental observations, they still could not be used to completely justify the field observations. In this study, the main features of the thermo-poroelastic model are incorporated in a thermo-poroelastoplastic constitutive model (ACMEG-T) to further investigate the effect of different thermal and hydraulic properties on thermo-hydro-mechanical (THM) response of the soil media.
Highlights
Summary
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.