Abstract
ABSTRACTA range of polymer blends were prepared via a solvent‐based film casting process using highly/hyperbranched (HB) polydivinylbenzenes (PDVB) polymers of two different molecular weights, linear functionalized (LF), hydrogenated hyperbranched (H‐HB2) PDVB, and linear polystyrene (LP). The thermal, thermomechanical, and rheological properties of the pure polymers and blends were then investigated and the results related to the concentration of “branched” polymer in the blend and the level of branching/polymer end groups present in the “branched” polymers used. Differential scanning calorimetry (DSC) analysis revealed an increase of the glass transition temperature (Tg) for the blends containing the nonhydrogenated HBs (~108 °C compared to ~102 °C for LP), which was attributed to crosslinking via the unsaturated reactive chain end/pendant groups in the HB (CHCH2). In contrast at the blends, containing the hydrogenated polymers H‐HB2, exhibited the same Tg as LP (~102°C) due to absence of crosslinking from the (H‐HB2) polymer. As the unsaturated HBs were found to be thermally curable, curing temperature rheology measurements were carried out employing a temperature ramp. No specific Tgel (the temperature at which HB gets crosslinked) was identified for LP‐HB1 and LP‐HB2 blends, which might be suggested to be due to the fact that both chain entanglement from linear polystyrene. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48547.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.