Abstract
The study aims to identify the main reason of the thermal response time difference between historical and modern buildings. Therefore, in this study, the thermal response time of historical and modern wall structures and its effect on the interior air temperature change was investigated parametrically. Considering the environmental conditions of Kocaeli province, Turkey, the thermal response time of a historical building wall made of a cut stone was compared with those of brick and gas concrete wall structures having the same overall heat transfer coefficient using the second-order lumped capacitance approach. The insulation thicknesses of the three different construction materials for U-values of 0.6, 0.4 and 0.2 W/m2K were calculated and temperature variations of indoor environment, wall and insulation material were analyzed. In addition, the required thicknesses of insulation material to obtain the same heat transfer coefficients were determined in case of using the 0.1 m thickness of cut stone, brick and gas concrete structure materials. The maximum and minimum amplitudes of the inside air temperature were recorded as 0.59 and 0.18oC for the aerated concrete in Case 3 and for the cut stone in Case 2, respectively. As a result, the walls with high thermal inertia are less affected by the changes in the environmental temperature although their U-value is relatively high. For this reason, it can be stated that one of the reasons why historical buildings have thick walls is to increase thermal inertia and thereby improve thermal comfort by reducing energy loss.
Highlights
Historical buildings are important structures that contain pieces of information about the history of humanity and the historic texture of the region
Analyses were performed for the cut stone as a historical building material, and brick and aerated concrete materials as modern building materials under three different scenarios
In the first scenario (Case 1), the cut stone material with 1m thickness and with U = 1.73 W/m2K was taken as a reference, and the required thickness of the brick and aerated concrete materials were calculated to provide the same U-value
Summary
Historical buildings are important structures that contain pieces of information about the history of humanity and the historic texture of the region. The effects of materials used in historical and modern buildings (namely, cut stone, brick and gas concrete) on the thermal response time and interior air temperature were analyzed in three different scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.