Abstract
In this paper, we compare thermal performances of two types of heat sinks commonly used in the electronic equipment industry: plate-fin and pin-fin heat sinks. In particular, heat sinks subject to an impinging flow are considered. For comparison of the heat sinks, experimental investigations are performed for various flow rates and channel widths. From experimental data, we suggest a model based on the volume averaging approach for predicting the pressure drop and the thermal resistance. By using the model, thermal resistances of the optimized plate-fin and pin-fin heat sinks are compared. Finally, a contour map, which depicts the ratio of the thermal resistances of the optimized plate-fin and pin-fin heat sinks as a function of dimensionless pumping power and dimensionless length, is presented. The contour map indicates that optimized pin-fin heat sinks possess lower thermal resistances than optimized plate-fin heat sinks when dimensionless pumping power is small and the dimensionless length of heat sinks is large. On the contrary, the optimized plate-fin heat sinks have smaller thermal resistances when dimensionless pumping power is large and the dimensionless length of heat sinks is small.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.