Abstract

AbstractTo support and facilitate the rehabilitation of patients with physical limitations and aid the therapist, several robotic structures are being studied. Among the structures, the cable-driven robots stand out. The cable-driven robots are structures actuated by cables and have the advantages of being flexible and reconfigurable for each patient. The objective of this paper is to develop a theoretical model for knee flexion/extension force and moment using a cable-driven robot. The proposed model is necessary for elaborating a referential to which diagnosis can be made and the improvement of the patient evaluated. The presented theoretical model was validated through experiments with twelve sedentary and healthy volunteers. The first procedure tested ten subjects in three thigh angles for knee flexion motion; the second procedure tested two subjects in flexion and extension for the same thigh angle. The results show the validity of the model for 88.58% of the tests in an ANOVA analysis with a 99% confidence interval. The similarity of data for different gender, ages, and intrinsic factors was noted, implying that the model is representative and independent of the subject’s individuality. Differences between flexion and extension values were observed, which need to be studied in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call