Abstract

Two approaches to the analysis of nonstationary random processes (short-time Fourier transform and continuous wavelet transform) are compared. The comparison is based on the study of several model signals with known time–frequency characteristics. The application of the approaches is also analyzed in the study of spectral dynamics of fluorescence of cold atomic clouds excited by pulsed radiation. It is shown that the two approaches make it possible to reveal the main specific features of the signals under study. However, the continuous wavelet transform has several advantages, since the optimal conditions for the analysis using the short-time Fourier transform are reached if additional calculations aimed at determination of the optimal width of the window are performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.