Abstract
Objectives:Water sorption and water solubility adversely affect the mechanical properties and biocompatibility of the denture material. This study aimed to evaluate the water sorption and solubility of three direct hard reline acrylic resins and a heat-curing one after immersion in food-simulating agents.Materials and Methods:This study was performed on four groups of samples (n = 10 per group). The samples were made of three direct hard reline acrylic resins (TDV Cold Liner Rebase, Tokuyama Rebase II Fast, GC Reline Hard) and a heat-curing one (Meliodent). Each group was divided into four subgroups (n = 10) to undergo 7-day immersion in distilled water, 75% ethanol/water, 0.02 N citric acid, and heptane. Water sorption and solubility were calculated according to Oysaed and Ruyter formula. The statistical analyses were done by using SPSS software (version 22). Kruskal–Wallis H Test and Dunn's test were used to detect any significant difference among the groups (P < 0.05).Results:The median range of water solubility and water sorption values were −0.87–4.92 and 3.75–27.25 μg/mm3, respectively. The median solubility and sorption values of different resins differed significantly in the same solution (P < 0.05). Besides, immersion in different solutions caused significant differences in the median solubility and sorption values of each reline material (P < 0.05), except for Meliodent whose solubility was not significantly affected by different solutions (P = 0.16).Conclusions:Water sorption and solubility values of the tested hard reline resins were within the range of International Standards Organization 1567:1999. Given the low sorption and solubility values, these hard reline materials can be safely used in clinical situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of International Society of Preventive and Community Dentistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.