Abstract
Direct injection of nanoscale zerovalent iron (NZVI) particles is being considered for remediation of contaminated sites. However, the transport characteristics of NZVI under horizontal flow conditions are not fully understood. In this study, NZVI particles were stabilized with carboxymethyl cellulose (CMC) and injected in vertical and horizontal columns to compare the effects of the flow direction on the transport. Columns were packed with sand of mean grain diameters of 180, 340 or 1140 µm (referred to as fine, intermediate and coarse sand, respectively), and were injected with CMC-NZVI suspensions of 0.3, 1 or 3 g Fe L(-1). Experimental breakthrough curves showed that with the coarse and intermediate sands, the steady-state effluent concentration in the horizontal column were up to 84% lower than those in the vertical column regardless of the initial NZVI concentration. However, in the fine sand the differences were insignificant, except at the highest NZVI particle concentration. Additionally, in the horizontally-oriented columns containing the coarse or intermediated sand, NZVI aggregates particles were non-uniformly distributed in the cross-section of the columns and there higher deposition in the bottom-half of the cross-section due to gravity effects. These deposition patterns can be accounted for, in part, by the gravitational settling of the large aggregates of NZVI, especially at high NZVI concentrations. A particle trajectory analysis in three dimensions demonstrated that under horizontal flow, gravity forces resulted in lower deposition of NZVI on the bottom-half of a single collector, as particles approaching the bottom-half of the collector were deflected by gravity to collectors below.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.