Abstract

G protein-coupled receptors (GPCR) are activated by a diverse array of extracellular signals, ranging from light to polypeptide molecules. The receptors propagate these signals intracellularly using G protein secondary messenger pathways. A common feature in the architecture of these receptors is their seven transmembrane domains. The first crystal structure of a GPCR, bovine rhodopsin, has recently been solved at 2.8 Å. We compared the seven membrane-spanning helices (TMH) from the crystal structure of bovine rhodopsin with those from the low-resolution model of bovine rhodopsin based on the cryo-electron microscopy structure of frog rhodopsin developed by Dr Joyce Baldwin. The model developed by Baldwin used a consensus sequence approach to predict the rotational position of each helix with respect to the other six helices. Superposition of the entire helix bundle of the Baldwin model with the crystal structure gave a RMS difference (RMSD) of 3.2 Å for the 198 C f atoms which suggests a high level of similarity in the arrangement of the helices. Except for TMH IV (RMSD of 4.0 Å), the position of corresponding helices within the helix bundle overlapped well. The superposition of individual helices showed that the RMSD values over 3 Å in the global superposition were largely due to one or more of the following: (i) differences in the unraveling and kinks for these helices, (ii) translation of TMH perpendicular to the membrane and (iii) rotation of helices up to 31°, except for TMH IV in which an additional contribution to the RMSD came from the aforementioned observation. As other crystal structures of GPCRs become available, a comparison with the Baldwin consensus model may reveal larger differences than those observed here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.