Abstract

The electrochemical and corrosion behavior of four alloys (wt %) is investigated: Al–6Ca (further Al6Ca), Al–6Ca–1Fe (further Al6Ca1Fe), Al–1Fe (further Al1Fe), and Ak12M2. An increased iron content (up to 1%) in alloys is necessary for the high productivity of casting under pressure. Electrochemical studies are performed in a 3% aqueous NaCl solution at 26 ± 0.5°C using an IPC-Pro 3A digital potentiostat (IPC-2000). Anodic polarization is performed in a potentiodynamic mode with a potential scan rate of 1 mV/s. The initial polarization potential is–800 mV with respect to the standard hydrogen electrode. The direction of the potential scan was changed to inverse upon the “critical” current density icr = 10 mA/cm2 performing polarization with the same rate. The tendency of the alloy to form pits was judged by the ratio of amounts of electricity that passed through the electrode before pitting formation and their repassivation (Qfor/Qinv) and values of pitting resistance bases: the difference in the pitting formation potential and stationary potential and the difference in the repassivation potential and stationary potential. Corrosion tests of casting aluminum alloys were performed holding the samples in a salt fog chamber and in a 3% aqueous NaCl solution for 700 h. After these holdings, the surface morphology of the samples was investigated using an Olympus GX51 optical microscope. It is established that Al6Ca1Fe and Al6Ca experimental alloys, in contrast to the AK12M2 industrial alloy and Al1Fe alloy, are not subjected to pitting corrosion in a 3% aqueous NaCl solution. It is assumed that the increased corrosion resistance of Al6Ca1Fe alloy is caused by the fact that iron enters the Al10CaFe2 intermetallic compound, which is not an efficient cathode because of the considerable negative potentials of Al and Ca. Due to the high casting and mechanical properties of the Al6Ca1Fe alloy, which are no worse than the properties of eutectic silumin and surpass them by the corrosion resistance, the Al6Ca1Fe alloy is promising for use in an industrial scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call