Abstract

The market for biogenic and synthetic alternatives to leather is increasing aiming to replace animal-based materials with vegan alternatives. In parallel, bio-based raw materials should be used instead of fossil-based synthetic raw materials. In this study, a shoe upper leather and an artificial leather, and nine alternative materials (Desserto®, Kombucha, Pinatex®, Noani®, Appleskin®, Vegea®, SnapPap®, Teak Leaf®, and Muskin®) were investigated. We aimed to compare the structure and technical performance of the materials, which allows an estimation of possible application areas. Structure and composition were characterized by microscopy and FTIR spectroscopy, the surface properties, mechanical performance, water vapor permeability, and water absorption by standardized physical tests. None of the leather alternatives showed the universal performance of leather. Nevertheless, some materials achieved high values in selected properties. It is speculated that the grown multilayer structure of leather with a very tight surface and a gradient of the structural density over the cross-section causes this universal performance. To date, this structure could neither be achieved with synthetic nor with bio-based materials.

Highlights

  • A circular economy aims at reusing consumed materials and ideally, product cycles become closed according to the cradle-to-cradle principle [1,2]

  • The materials were investigated by standardized testing procedures for leather since the materials are offered as a leather alternative

  • None of the alternative materials achieved the properties of leather according to the applied reference values, many of them are offered as a leather alternative (Figure 5)

Read more

Summary

Introduction

A circular economy aims at reusing consumed materials and ideally, product cycles become closed according to the cradle-to-cradle principle [1,2]. The societies of the countries of the Global North have experienced a strong change in their mindset due to the discussion about climate change, finiteness of resources, the overutilization of ecosystems, and the pollution of the environment by non-degradable or harmful substances. This affects especially the consumer goods industry and the designers of new materials aim to replace fossil-based polymers with biogenic and fully biodegradable materials while being animal-free and without the use of any harmful substances. The new materials are made from domestic waste, sawdust, or organic garbage [3,4,5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call