Abstract

PurposeBoron neutron capture therapy (BNCT), an attractive strategy for cancer treatment, can kill tumor cells and avoid injury to surrounding healthy cells. 4-Borono-2-[18F]fluorophenylalanine ([18F]FBPA) positron emission tomography (PET) is a reliable tool for patient screening. Due to the relatively low radiochemical yield when employing the electrophilic route, this study was able to develop a new method to produce no-carrier-added (NCA) [18F]FBPA and compare the biological characteristics with carrier-added (CA) characteristics. ProceduresBy starting from 4-bromo-2-nitrobenzaldehyde, NCA [18F]FBPA was prepared using radiofluorination, alkylation, borylation, and hydrolysis. Cellular uptake analyses, microPET imaging, and biodistribution analyses were conducted to characterize the biological properties of NCA and CA [18F]FBPA. ResultsThe radiochemical yield of NCA [18F]FBPA was 20 % ± 6 % (decay corrected) with a radiochemical purity of >98 % and molar activity of 56 ± 15 GBq/μmol in a 100-min synthesis. The in vitro accumulation was significantly higher for NCA [18F]FBPA than for CA [18F]FBPA in both SAS and CT-26 cells. However, no apparent differences in tumor uptake were observed between NCA and CA [18F]FBPA-injected tumor-bearing mice. ConclusionsWe successfully prepared NCA [18F]FBPA through nucleophilic substitution and achieved improved radiochemical yield and purity. We also demonstrated the effects of the amount of nonradioactive FBPA on in vitro cellular uptake and in vivo imaging studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.