Abstract

Under the various available PVD processes, thin films can be deposited with higher or lower deposition energy, e.g., with or without ion bombardment. Related to this deposition energy the structure and consequently the properties of the deposited films can be directly influenced. The wide range of possible deposition parameters for the PVD-processes enables the use of materials in form of thin films in a large scope of applications, as a result of the different properties which can be achieved. Particularly high adhesion of thin films is always desired, which depends among other things on the microstructure of coatings. The aim of this paper is to compare three different PVD deposition processes: cathodic arc evaporation, magnetron sputtering and electron beam evaporation. These PVD processes are related to their film structure produced under three different conditions and studied interms of their deposition energies. Structure and morphology of the coatings are compared at identical temperatures resulting in a model, which is suggested to explain how excitation of deposited films takes place. Besides condensation effects, the momentum transfer of ions caused by biasing the substrates is obviously important and leads to film densification without increasing the substrate temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.