Abstract

The structure of subfragment 1 (S1) bound to F-actin has been compared to the structure of free S1 using neutron scattering. The F-actin was rendered "invisible" to neutrons by selective deuteration and solvent contrast matching. Highly deuterated actin was purified from the slime mold Dictyostelium discoideum, which was fed deuterated Escherichia coli. The properties of this actin were found to be similar to those of protonated actin. The neutron-scattering pattern of S1 bound to this "invisible" actin was compared to that of free S1. At near-physiological ionic strength, a strong interference effect was observed, which arose from pairs of S1 molecules cross-linking actin filaments. However, at low ionic strength the only differences that could be observed were attributed to interference effects between neutrons scattered from S1s bound randomly to equivalent sites on an actin filament. These effects became negligible as the fraction of actin sites occupied by S1 approached zero. Thus, we conclude that the scattering by S1 attached to F-actin is identical with that of free S1, to a resolution of about 2.5 nm. The difference in apparent radii of gyration is less than 0.05 nm. Modeling calculations have been carried out to determine the sensitivity of neutron scattering to possible S1 deformations. The calculations showed that deformations of the structure of S1 that are large enough ultimately to produce a powerstroke of 5 nm or greater are only consistent with the data if they involve at most about 20% of the S1 mass. These results restrict the class of plausible models describing force generation in muscle contraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.