Abstract

The nucleotide sequences of the udp gene encoding uridine phosphorylase of Yersinia pseudotuberculosis and Vibrio cholerae are presented and compared with the udp sequences of Salmonella typhimurium and Escherichia coli. Both genes contain 759 bases and encode a 253 amino acid polypeptide, which is the same as for E. coli and S. typhimurium. The amino acid sequence derived from S. typhimurium gene was more similar to the derived E. coli sequence, with only a 7 amino acid difference. The Y. pseudotuberculosis and V. cholerae uridine phosphorylases presented a higher degree of divergence in their amino acid sequence as compared to the corresponding E. coli amino acid sequence, with 20 and 64 changes, respectively. The promoter regions of the udp gene for S. typhimurium ( udpP St ), Y. pseudotuberculosis ( udpP Yp ) and V. cholerae ( udpP Vc ) were identified by primer extension analysis. Comparative analysis of the udpP promoter region from Y. pseudotuberculosis, V. cholerae, S. typhimurium and E. coli revealed that location, spacing and orientation of putative binding sites for CRP protein are highly conserved, whereas CytR protein recognition sequences of udpP Yp and udpP Vc deviate markedly from the E. coli and S. typhimurium CytR binding site. In vitro studies demonstrated that the CytR protein from E. coli shows different affinity for each promoter region analyzed. According to this, the degree of CytR derepression after introduction of heterologous promoters into E. coli cells is different.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call