Abstract

Abstract Two coupled atmosphere–ocean general circulation models developed at GFDL show differing stability properties of the Atlantic thermohaline circulation (THC) in the Coupled Model Intercomparison Project/Paleoclimate Modeling Intercomparison Project (CMIP/PMIP) coordinated “water-hosing” experiment. In contrast to the R30 model in which the “off” state of the THC is stable, it is unstable in the CM2.1. This discrepancy has also been found among other climate models. Here a comprehensive analysis is performed to investigate the causes for the differing behaviors of the THC. In agreement with previous work, it is found that the different stability of the THC is closely related to the simulation of a reversed thermohaline circulation (RTHC) and the atmospheric feedback. After the shutdown of the THC, the RTHC is well developed and stable in R30. It transports freshwater into the subtropical North Atlantic, preventing the recovery of the salinity and stabilizing the off mode of the THC. The flux adjustment is a large term in the water budget of the Atlantic Ocean. In contrast, the RTHC is weak and unstable in CM2.1. The atmospheric feedback associated with the southward shift of the Atlantic ITCZ is much more significant. The oceanic freshwater convergence into the subtropical North Atlantic cannot completely compensate for the evaporation, leading to the recovery of the THC in CM2.1. The rapid salinity recovery in the subtropical North Atlantic excites large-scale baroclinic eddies, which propagate northward into the Nordic seas and Irminger Sea. As the large-scale eddies reach the high latitudes of the North Atlantic, the oceanic deep convection restarts. The differences in the southward propagation of the salinity and temperature anomalies from the hosing perturbation region in R30 and CM2.1, and associated different development of a reversed meridional density gradient in the upper South Atlantic, are the cause of the differences in the behavior of the RTHC. The present study sheds light on important physical and dynamical processes in simulating the dynamical behavior of the THC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.