Abstract

In this paper, the recently developed sparse-grid quadrature filter is compared with the cubature Kalman filter. The relation between the sparse-grid quadrature rule and the cubature rule is revealed. It can be shown that arbitrary degree cubature rules can be obtained by the projection of the sparse-grid quadrature rule. Since both rules can achieve an arbitrary high degree of accuracy, they are more accurate than the conventional third-degree cubature rule and the unscented transformation. In addition, they are computationally more efficient than the Gauss-Hermite quadrature rule and the Monte-Carlo method when they are used to calculate the Gaussian type integrals in the nonlinear filtering. The comparison of these rules is demonstrated by a benchmark numerical integration example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.