Abstract

BackgroundEstimating kidney glomerular filtration rate (GFR) is of utmost importance in many clinical conditions. However, very few studies have evaluated the performance of GFR estimating equations over all ages and degrees of kidney impairment. We evaluated the reliability of two major equations for GFR estimation, the CKD-EPI and Schwartz equations, with urinary clearance of inulin as gold standard.Methods and FindingsThe study included 10,610 participants referred to the Renal and Metabolic Function Exploration Unit of Edouard Herriot Hospital (Lyon, France). GFR was measured by urinary inulin clearance (only first measurement kept for analysis) then estimated with isotope dilution mass spectrometry (IDMS)–traceable CKD-EPI and Schwartz equations. The participants’ ages ranged from 3 to 90 y, and the measured GFRs from 3 to 160 ml/min/1.73 m2. A linear mixed-effects model was used to model the bias (mean ratio of estimated GFR to measured GFR). Equation reliability was also assessed using precision (interquartile range [IQR] of the ratio) and accuracy (percentage of estimated GFRs within the 10% [P10] and 30% [P30] limits above and below the measured GFR). In the whole sample, the mean ratio with the CKD-EPI equation was significantly higher than that with the Schwartz equation (1.17 [95% CI 1.16; 1.18] versus 1.08 [95% CI 1.07; 1.09], p < 0.001, t-test). At GFR values of 60–89 ml/min/1.73 m2, the mean ratios with the Schwartz equation were closer to 1 than the mean ratios with the CKD-EPI equation whatever the age class (1.02 [95% CI 1.01; 1.03] versus 1.15 [95% CI 1.13; 1.16], p < 0.001, t-test). In young adults (18–40 y), the Schwartz equation had a better precision and was also more accurate than the CKD-EPI equation at GFR values under 60 ml/min/1.73 m2 (IQR: 0.32 [95% CI 0.28; 0.33] versus 0.40 [95% CI 0.36; 0.44]; P30: 81.4 [95% CI 78.1; 84.7] versus 63.8 [95% CI 59.7; 68.0]) and also at GFR values of 60–89 ml/min/1.73 m2. In all patients aged ≥65 y, the CKD-EPI equation performed better than the Schwartz equation (IQR: 0.33 [95% CI 0.31; 0.34] versus 0.40 [95% CI 0.38; 0.41]; P30: 77.6 [95% CI 75.7; 79.5] versus 67.5 [95% CI 65.4; 69.7], respectively). In children and adolescents (2–17 y), the Schwartz equation was superior to the CKD-EPI equation (IQR: 0.23 [95% CI 0.21; 0.24] versus 0.33 [95% CI 0.31; 0.34]; P30: 88.6 [95% CI 86.7; 90.4] versus 29.4 [95% CI 26.8; 32.0]). This study is limited by its retrospective design, single-center setting with few non-white patients, and small number of patients with severe chronic kidney disease.ConclusionsThe results from this study suggest that the Schwartz equation may be more reliable than the CKD-EPI equation for estimating GFR in children and adolescents and in adults with mild to moderate kidney impairment up to age 40 y.

Highlights

  • In the past decade, kidney disease has been recognized as a major public health burden

  • We evaluated the reliability of two major equations for glomerular filtration rate (GFR) estimation, the chronic kidney disease (CKD)-EPI and Schwartz equations, with urinary clearance of inulin as gold standard

  • The results from this study suggest that the Schwartz equation may be more reliable than the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation for estimating GFR in children and adolescents and in adults with mild to moderate kidney impairment up to age 40 y

Read more

Summary

Introduction

Kidney disease has been recognized as a major public health burden. As preventing or slowing the progression of CKD toward end-stage renal disease relies mainly on early detection, international recommendations have been proposed for the diagnosis and management of CKD in the general population [1,3,4]. We evaluated the reliability of two major equations for GFR estimation, the CKD-EPI and Schwartz equations, with urinary clearance of inulin as gold standard. Examples of creatinine-based GFR estimation equations include the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation and the Schwartz equation, which were developed in middle-aged adults and children, respectively. Few studies have evaluated the performance of such equations over all ages and levels of kidney impairment, so here the researchers assess the reliability of the CKD-EPI and Schwartz equations for estimating GFR in children, adolescents, and adults

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call