Abstract

Bandpass correction in spectrometer measurements using monochromators is often necessary in order to obtain accurate measurement results. The classical approach of spectrometer bandpass correction is based on local polynomial approximations and the use of finite differences. Here we compare this approach with an extension of the Richardson–Lucy method, which is well known in image processing, but has not been applied to spectrum bandpass correction yet. Using an extensive simulation study and a practical example, we demonstrate the potential of the Richardson–Lucy method. In contrast to the classical approach, it is robust with respect to wavelength step size and measurement noise. In almost all cases the Richardson–Lucy method turns out to be superior to the classical approach both in terms of spectrum estimate and its associated uncertainties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.