Abstract
The experimental properties of different polymer melts, polystyrene, high density polyethylene and low density polyethylene are compared for the first time in three different deformations: step shear, step biaxial extension and steady uniaxial extension. Properties of three other melts are also studied in step biaxial and shear experiments. For our comparative purposes some data of Laun and Winter from the literature are used, as well as new data reported here. In all the step strain experiments, the stresses can be factored into a time dependent relaxation modulus and a strain dependent damping function. The data are interpreted using a differential constitutive equation of Larson which satisfies this time-strain separability and has a single parameter that describes the strain softening character of the material. Results show that differences in the properties of the melts are most pronounced in uniaxial extension and least in biaxial extension. All melts follow the Doi-Edwards prediction relatively closely in biaxial extension. In uniaxial extension, the branched material shows a strong strain hardening effect although its shear and biaxial properties are similar to the other melts. The constitutive model gives a reasonably good fit to the data in all three deformations for unbranched materials for the same value of the adjustable parameter; the model, however, fails for the branched low density polyethylene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.