Abstract

Reacted with methylglyoxal (MGO), murine Aβ(1-40) (mAβ) produced significantly less superoxide anion (O2•–) compared to human Aβ(1-40) (hAβ). The reactions of MGO with mAβ(R13H), hAβ(H13F), Nα-acetyl-l-lysine, and Nα-acetyl-l-arginine implied that the lack of His13 in mAβ prohibits its Lys16 residue from reacting to produce cross-linked reaction products and O2•–. Our results suggest that murine brains are under less oxidative stress than human brains, which may be one of the reasons why rodents do not develop AD-like symptoms, and which provides further insight into a chemical mechanism for the development of AD in humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.