Abstract

Foam rolling (FR) and vibration foam rolling (VFR) interventions have received attention as pre-exercise warm-ups because they maintain performance and increase range of motion (ROM). However, the immediate and prolonged effects and the comparisons between FR and VFR interventions are unknown. Therefore, this study was designed to compare the effects of FR and VFR interventions on passive properties of knee extensors over time (up to 30 min after interventions). A crossover, random allocation design was used with 14 male college students (22.1 ± 1.0 years old) in the control, FR, and VFR conditions. The knee flexion ROM, pain pressure threshold (PPT), and tissue hardness were measured before and immediately after, 10, 20, and 30 minutes after the intervention. The results showed that knee flexion ROM increased significantly immediately after the intervention in both the FR and VFR conditions and maintained up to 30 minutes after both conditions. PPT increased significantly (p < 0.01) immediately after the FR intervention. In the VFR condition, there was a significant increase in PPT immediately after the intervention (p < 0.01) and 10 minutes after the intervention (p < 0.05). Tissue hardness was significantly decreased (p < 0.01) immediately after and 10 minutes after the FR intervention. However, tissue hardness in the VFR condition was significantly decreased (p < 0.01) up to 30 minutes after the intervention. The results suggest that FR and VFR interventions increase knee flexion ROM, and the effect lasts at least 30 minutes, but the effects on PPT and tissue hardness are maintained a longer time in the VFR condition compared to the FR condition. Therefore, VFR can be recommended as a warm-up before exercise to change the passive properties of knee extensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.