Abstract
The production of human monoclonal antibodies for therapeutic use is of increasing importance for treatment of viral infections such as AIDS. As human x mouse heterohybridomas rarely reach the growth rates and cell specific production rates of mouse hybridomas the transfection of standard cell lines, such as CHO or BHK, is a promising alternative. This has the additional advantage that the IgG subtype can be changed to suit the desired application. However, the use of a cell line that has not originally developed to produce antibodies, as lymphocytes and myeloma cells have, might have unrecognised drawbacks. This will be especially significant in the case of antibodies as each molecule consists of 4 chains linked by disulphide bonds which require specific intracellular factors to be properly folded and processed (Heavy chain binding protein, Protein Disulfide Isomerase a.o.). In this study we have therefore compared two cell lines: a human x mouse heterohybridoma producing IAM-2F5, a human IgG(3) antibody specific for HIV-1 with neutralising properties and a Chinese Hamster Ovary cell transfected with dihydrofolate reductase and with the heavy and light chain genes of IAM-2F5 modified to IgG(1). From each cell line three subclones were selected with low, medium and high specific production rates. Batch cultures were performed and the following cellular parameters analysed by flow cytometry; 1) total RNA content (translational activity); 2) total protein content; 3) cell cycle phase distribution; 4) concentration of light and heavy chains; 5) concentration of helper proteins such as BiP and PDI. The production rate of heterohybridoma cells was best reflected in the intracellular concentration of kappa chain, while the gamma chain concentration was comparable for all three subclones. In the CHO cells the gamma chain expression and thus gene copy number appeared to be the limiting factor. The GRP78/BiP concentration in CHO remained unchanged in spite of a 5-fold higher concentration of gamma chain in the high producing subclone. The PDI concentration in CHO cells was much lower compared to the heterohybridoma cells, irrespective of production rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.