Abstract

The physically complete Normalized Surface Magnetic Source (NSMS) model and a variant of the simple dipole model are applied to new-generation electromagnetic induction (EMI) data. The main objective is to assess the NSMS and dipole models' capabilities to discriminate between UXO and clutter starting from scattered EMI signals. The discrimination contains two sets of parameters: (1) intrinsic parameters associated with the size, shape, and material composition of the target; and (2) extrinsic parameters related to the orientation and location of the anomaly. To discriminate UXO from clutter a mathematical model is fit to the geophysical data, after which both intrinsic and extrinsic parameters are extracted using an optimization technique. The inverted intrinsic parameters thus found are used to isolate objects of interest from non-hazardous items. The discrimination performance depends significantly on the mathematical model. In this work we present results of applying the single dipole, multi-dipole, and NSMS models to single- and multi-axis sensor data produced by new-generation EMI instruments such as MPV, TEMTADS, and MetalMapper, all of which are are time-domain systems. The MPV has a single transmitter and five tri-axial receivers, the TEMTADS array is a towed system featuring 25 transmitter/receiver pairs, and MetalMapper contains three rectangular transmitters and five tri-axial receivers distributed on a plane. The inversion and discrimination performance of the NSMS and single-dipole models are illustrated for the high-quality, well-located EMI data produced by these instruments. Specifically, we present comparisons between inverted intrinsic and extrinsic parameters, as determined from each model and compared with the ground truth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.