Abstract
There is a limited understanding of the characteristics of individual intracranial stents used for aneurysm treatment. We used an experimental model to evaluate the physical characteristics of support stents for aneurysm embolization. Enterprise 2 VRD 4.0 × 39 mm, Neuroform Atlas 4.5 × 21 mm, and LVIS 4.5 × 32 mm stents were: 1) observed under light microscopy and subjected to measurements of 2) circumferential radial force, 3) strut tension, 4) stent compression, and 5) conformability upon bending. 1) Light microscopy showed a large structural difference between laser-cut (Enterprise 2 VRD, Neuroform Atlas) and braided (LVIS) stents. 2) Within the range of indicated blood vessel diameters, the radial force of Enterprise 2 VRD was higher than that of Neuroform Atlas. An extremely large force was required to decrease the LVIS diameter. 3) Neuroform Atlas easily deformed compared to Enterprise 2 VRD, while LVIS was extended with a smaller traction force than that required for Neuroform Atlas. 4) The compression strength was in the order of Enterprise 2 VRD >Neuroform Atlas >LVIS. 5) Enterprise 2 VRD showed a decreased cell area on the concave side, and Neuroform Atlas showed deformation with overlapping struts on the concave side. LVIS naturally adhered to the wall of the blood vessel model. Laser-cut and braided stents showed different physical characteristics that were visualized and shown as numerical data. These findings improve the understanding of the proper use of these stents in clinical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.