Abstract
Clostridial neurotoxins are internalized inside acidic compartments, wherefrom the catalytic chain translocates across the membrane into the cytosol in a low pH-driven process, reaching its proteolytic substrates. The pH range in which the structural rearrangement of clostridial neurotoxins takes place was determined by 8-anilinonaphthalene-1-sulfonate and tryptophan fluorescence measurements. Half conformational change was attained at pH 4.55, 4.50, 4.40, 4.60, 4.40, and 4.40 for tetanus neurotoxin and botulinum neurotoxin serotypes /A, /B, /C, /E, and /F, respectively. This similarity indicates the key residues for the conformation transition are strongly conserved. Acidic liposomes support the conformational rearrangement shifting the effect versus higher pH values, whereas zwitterionic liposomes do not. The disulfide bridge linking the light and the heavy chains together needs to be oxidized to allow toxin membrane insertion, indicating that in vivo its reduction follows exposure to the cytosol after penetration of the endosomal membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.