Abstract

Abstract Experimental studies have been performed in a 10 cm diameter, 36 m long, multiphase flow loop to examine the effect of drag reducing agents using 6 cP oil. Studies were performed for superficial liquid velocities of 0.5, 1.0 and 1.5 m/s and superficial gas velocities between 2 and 12 m/s. Carbon dioxide was used as the gas phase. The drag reducing agent (DRA) concentrations were 20 and 50 ppm. The system was maintained at a pressure of 0.13 MPa and a temperature of 25 °C. The comparison of the conditioning of flow with DRA between 2.5 cP oil and 6 cP oil is presented. The results show that pressure drop in both 2.5 cP oil and 6 cP oil was reduced significantly in multiphase flow with addition of DRA. A DRA concentration of 50 ppm was more effective than 20 ppm DRA for all cases. As the oil viscosity was increased from 2.5 cP to 6 cP oil, the transition to annular flow was observed to occur at lower superficial gas velocities. For slug flow and lower superficial gas velocities, the effectiveness in 2.5 cP oil was much higher than that in 6 cP oil with addition of DRA. However, for higher superficial gas velocities, the effectiveness in both oils was similar. For annular flow, the effectiveness in 2.5 cP oil was higher than in 6 cP oil with 50 ppm DRA. At low superficial gas velocities, DRA in 2.5 cP oil was more effective in reducing the slug frequency. This led to a higher average pressure drop reduction in 2.5 cP oil. However, at higher superficial gas velocities, the slug frequency decreased in both oils almost the same magnitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call