Abstract
Potential energy curves for five complexes with weak to medium strong hydrogen bonds have been computed with dispersion corrected DFT methods. The electronic density based vdW-DF2 and VV10 van der Waals density functionals have been tested, as well as an atom pair-wise correction method (DFT-D3). The short-range exchange-correlation components BLYP and rPW86-PBE together with the extended aug-cc-pVQZ basis sets have been employed. Reference data have been computed at the estimated CCSD(T)/CBS(aQ-a5) level of theory. The investigated systems are CH(4)·NH(3), Cl(3)CH·NH(3), NH(3)·NH(3), CH(3)F·C(2)H(2) and CH(3)F·H(2)O with binding energies ranging from -0.7 kcal mol(-1) to -5.5 kcal mol(-1). We find that all dispersion corrected methods perform reasonably well for these hydrogen bonds, but also observe distinct differences. The BLYP-D3 method provides the best results for three out of five systems. For the fluorinated complexes, the VV10 method gives remarkably good results. The vdW-DF2 method yields good interaction energies similar to the other methods (mean average deviation of 0.2-0.3 kcal mol(-1)), but fails to provide accurate equilibrium separations. Based on these results and previous experience with the computation of non-covalent interactions, for large-scale applications we can recommend DFT-D3 based structure optimizations with subsequent checking of interaction energies by single-point VV10 computations. Comparison of the DFT-D3 and VV10 results leads to the conclusion that the short-range exchange-correlation functional and not the dispersion correction mainly determines the achievable accuracy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.