Abstract

In the context of a warming climate and dry conditions, aggravating water shortages, research on partitioning total evapotranspiration (ET) into soil evaporation (E) and plant transpiration (T) is needed. Recently, using the oxygen isotope ratio as a tracer has proved to be a valuable way to better partition ET. In this study, we carefully considered the process of heavy water fractionation during the transpiration process, and specifically, we modified the kinetic fractionation coefficient (αk2) of transpiration, based on previous formulations used to estimate it. Our results show that, for the hourly and daily mean data set, both the isotopic–steady–state (ISS) and non–steady–state (NSS) assumptions for δ18O of leaf water (δL,b) provided a good fit with observed δL,b when using the modified αk2. In contrast, using αk2 values traditionally assigned led to significant deviations from observed δL,b (p < 0.05), potentially influencing ET partitioning results. On diurnal time scales, the percent contribution of T to total ET (FT) is sensitive to different model assumptions and different formulations to estimate αk2. The modeled FT, assuming NSS conditions and using the modified αk2 value, led to the best agreement with observed values. In contrast, on longer time scales (days), using the ISS assumption to partition ET is adequate, as the NSS assumption could introduce more complexities and uncertainties. Our study demonstrates that the stable isotope technique is a promising utility for quantitatively partitioning ET. To more accurately estimate FT, we also call on a better description of the nature of αk2 of transpiration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call