Abstract

Homogeneous liquid–liquid extraction (HLLE) has attracted considerable interest in the sample preparation of multi-analyte analysis. In this study, HLLEs of multiple phenolic compounds in propolis, a polyphenol-enriched resinous substance collected by honeybees, were performed for improving the understanding of the differences in partition efficiencies in four acetonitrile–water-based HLLE methods, including salting-out assisted liquid–liquid extraction (SALLE), sugaring-out assisted liquid–liquid extraction (SULLE), hydrophobic-solvent assisted liquid–liquid extraction (HSLLE), and subzero-temperature assisted liquid–liquid extraction (STLLE). Phenolic compounds were separated in reversed-phase HPLC, and the partition efficiencies in different experimental conditions were evaluated. Results showed that less-polar phenolic compounds (kaempferol and caffeic acid phenethyl ester) were highly efficiently partitioned into the upper acetonitrile (ACN) phase in all four HLLE methods. For more-polar phenolic compounds (caffeic acid, p-coumaric acid, isoferulic acid, dimethoxycinnamic acid, and cinnamic acid), increasing the concentration of ACN in the ACN–H2O mixture could dramatically improve the partition efficiency. Moreover, results indicated that NaCl-based SALLE, HSLLE, and STLLE with ACN concentrations of 50:50 (ACN:H2O, v/v) could be used for the selective extraction of low-polarity phenolic compounds. MgSO4-based SALLE in the 50:50 ACN–H2O mixture (ACN:H2O, v/v) and the NaCl-based SALLE, SULLE, and STLLE with ACN concentrations of 70:30 (ACN:H2O, v/v) could be used as general extraction methods for multiple phenolic compounds.

Highlights

  • Increasing demands on monitoring a large number of target compounds have promoted the development of multi-analyte analytical methods

  • For NaCl-based salting-out assisted liquid–liquid extraction (SALLE), shown in Figure 2a, extraction yields (EYs) of phenolic compounds increased as the salt concentration increased from

  • As the salt isoferulic acid, dimethoxycinnamic acid, cinnamic acid, kaempferol, and caffeic acid phenethyl ester concentration further increased to 125 g/L, slight growth in EYs was observed

Read more

Summary

Introduction

Increasing demands on monitoring a large number of target compounds have promoted the development of multi-analyte analytical methods. To assess a broad spectrum of possible metabolites, metabolomics requires multi-analyte methods to analyze the entire metabolome [1,2]. As another example, improper usage and the cross-contamination of chemicals in agricultural practice may lead to multi-residues of contaminants in agricultural products. Especially the chromatography tandem mass spectrometry techniques, are capable of analyzing a large number of target compounds in a single analysis [5] Fingerprint profiles based on multi-analyte analysis of phytochemical compounds or volatile fractions in foods have been applied in foodomics for the issue of food quality [4].

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.