Abstract

Using a mass-spectrometric (16)O(2)/(18)O(2)-isotope technique, we compared the nature and the relative importance of oxygen exchange in photomixotrophic (PM) and photoautotrophic (PA) suspensions of Euphorbia characias L. with those in intact leaves of the same species. Young and mature leaves, dividing and nondividing cell suspensions were characterized in short-term experiments. On chlorophyll basis, the gross photosynthetic activities at CO(2) saturating concentration of PA and PM suspensions varied little from those of leaves. On dry weight basis, gross photosynthesis of PA suspensions was equal to that of leaves because of their similar chlorophyll content. This was not the case in PM suspensions where gross photosynthesis was lower and largely varied during the growth cycle. The CO(2) compensation point of PA cells (155-265 parts per million) was much higher than that of leaves (50-80 ppm). Oxygen uptakes were analyzed in terms of mitochondrial respiration, photorespiration and light stimulation of oxygen uptake (LSOU), often identified to Mehlertype reactions. In PA and PM suspensions, mitochondrial respiration rates were higher than in leaves by a factor of 1.5 to 4.5. In PM suspensions, photorespiration and LSOU were observed only in nondividing cells. Photorespiration and LSOU rates were comparable in PA suspensions and leaves. Our results demonstrate that photorespiration of PA suspensions has not been affected by the 2% CO(2) concentration imposed during 2 years of culture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call