Abstract

Cobalt nanoparticles (CoNPs) have been widely used in industry given their physical, chemical and magnetic properties; however, CoNPs may cause neurological symptoms and diseases in human, yet their mechanisms of toxicity remain unknown. Here, we used male Wistar rats to investigate differences in the toxic effects associated with CoNPs and CoCl2. Upon exposure to CoCl2, and 96 nm or 123 nm CoNPs at the same concentration, the Co2+ content in CoCl2 group was significantly higher than that in either the CoNPs groups in brain tissues and blood, but lower in liver. Significant neural damage was observed in both hippocampus and cortex of the temporal lobe. Increase malondialdehyde (MDA) content and CASPASE 9 protein level were associated both with CoCl2 and CoNPs treatments, consistent with lipid perioxidation and apoptosis. Heme oxygenase-1 and (NF-E2) p45-related factor-2 protein levels were elevated in response to 96 nm CoNPs exposure. In PC12 cells, NRF2 downregulation led to reduced cell viability and increased apoptotic rate. In conclusion, both CoNPs and CoCl2 cause adverse neural effects, with nanoparticles showing greater neurotoxic potency. In addition, NRF2 protects neural cells from damage induced by CoCl2 and CoNPs by activating downstream antioxidant responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.