Abstract
A grain growth simulation based on the concept of grain boundary migration driven by the radius curvature has been tested to study the abnormal grain growth (AGG) of the Goss grains in silicon steels in presence of particles. In the classical simulation of AGG, the grain size is generally assumed to be homogeneous. In order to introduce the influence of the morphological and crystallographic heterogeneities on AGG around the Goss grain, the simulation procedure has been implemented using as starting state an experimental microstructure characterized by Orientation Imaging Microscopy (OIMTM). Abnormal growth results are compared for the two grades, Hi-B and CGO of Fe-3%Si alloys. It has been notably shown that the large grains resist AGG so that the Goss grain shape becomes anisotropic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.